

Secretaria de Industria y Desarrollo Productivo

Certificado de Calibración

OT N° 00222-00012238 Página 1 de 13

Elemento

Objeto: 1 (un) Calibrador multifunción.

Fabricante / Marca: Fluke.

Modelo / Número de serie: 5500A / 6370005

Identificado como: CP 08

Cumple opn Tolerancia

Firma.

Fecha 14/10/2025

Determinaciones requeridas

Calibración

Fecha de calibración / medición

Del 23/9/2025 al 9/10/25

Solicitante

EDACI SRL LYNCH 2684 SAN JUSTO

Provincia de Buenos Aires

Lugar de realización

Departamento de Metrología Cuántica Dirección Técnica de Metrología Física S. O de Metrología Científica e Industrial

G. O de Metrología y Calidad

Sede PTM fisicaymetrologia@inti.gob.ar

Av. Gral. Paz 5445 - CP 1650 - Edificio 3 y 44 San Martín - Buenos Aires

República Argentina

Teléfono:

(5411)4752-5402

(54 11) 4724-6200 Interno 6444

Buenos Aires, 9 de octubre de 2025

Ver cláusulas aplicables a este certificado al final del documento

www.inti.gob.ar | consultas@inti.gob.ar | 0800 444 4004

IF-2025-114054210-APN-SOMCEI#INTI

Secretaría de Industria y Desarrollo Productivo

Certificado de Calibración

OT N° 00222-00012238 Página 2 de 13

Metodología empleada

El instrumento fue calibrado utilizando el procedimiento PEMC52.

Se midieron las magnitudes eléctricas presentes en los bornes de salida Normal, Auxiliar y de termopar -- identificado como TC-- del calibrador. Utilizando instrumental apropiada para cada función.

Para la medición de tensión eléctrica continua en los bornes de salida Normal y Auxiliar se utilizó un multímetro digital de alta exactitud HP3458.

Para medir la corriente eléctrica continua de salida del calibrador en los bornes Auxiliares se emplearon resistencias derivadores de corriente y un multímetro digital de alta exactitud, HP3458.

La medición de resistencia eléctrica en los bornes de salida Normal y Auxiliar (SENSE) del calibrador se efectuó con un multimetro Fluke 8508.

La tensión alterna en los bornes Normal y Auxiliar del calibrador fue medida con un voltímetro Fluke 5790A.

La corriente alterna en los bornes de salida Auxiliar del calibrador se midió con resistencias derivadoras y el voltímetro Fluke 5790A.

La medición de capacidad eléctrica en los bornes de salida se efectuó con el medidor LCR HP 4263A.

La frecuencia en los bornes de salida Normal del calibrador se midió con un contador HP 53132A.

La función de simulación de termopares se verificó midiendo los valores de tensión generados en los bornes identificados como TC mediante un multimetro HP3458A.

La función de indicador de termopar se verificó aplicando una tensión de referencia en los bomes TC con un calibrador 5700A.

Condiciones de medición

El instrumento bajo estudio se mantuvo a temperatura de laboratorio durante el período de medición. Todas las mediciones se realizaron luego de esperar el tiempo de calentamiento especificado por el fabricante y de realizar el ZERO del calibrador.

Condiciones ambientales

Temperatura ambiente de medición: (23 ± 1) °C Humedad relativa ambiente menor a 70%

Ver clausulas aplicables a este certificado al final del documento

IF-2025-114054210-APN-SOMCEI#INTI

Secretaria de Industria y Desarrollo Productivo

Certificado de Calibración

OT N° 00222-00012238 Página 3 de 13

Resultados

Las tablas que siguen muestran los valores medidos y las incertidumbres obtenidas.

Tabla 1
Tensión eléctrica continua medida en los bornes de salida Normal.

Rango	Valor nom	inal	Valor medi	do	Incertidum (k = 2)	bre
	0		0,0000	T	0,0040	
329,9999 mV	-329] mv [-329,0037	l m∨ l	0,0049	1 m∨
	329		329,0043	1	0,0049	1
	0		0,0000009		0,0000040	
	-3,29] [-3,290025	7 i	0,000049	7
3,299999 V	-1] [-0,999997] [0,000015	7
	1] [0,999996] [0,000015	
	3,29		3,290008] [0,000049]
	0] [0,0000072] [0,0000040]
	-32,9] [-32,90019] [0,00049	
32,99999 V	-10] [-9,99994] [0,00015]
	10] [9,99994		0,00015	v
	32,9] v [32,90008] v [0,00049	
	-329] ' [-329,0025]	0,0066	
	-100] [-99,9997] [0,0020]
329,9999 V	-50] [-49,9996] [0,0010	1
323,3333 V	50] [50,0000] [0,0010	
	100] [99,9999	7 [0,0020	1
	329] [329,0012] [0,0066	1
. 73	-900] [-900,007	7 [0,018	1
1020 V	-334] [-333,9985] [0,0067	
1020 V	334] [333,9982] [0,0067]
	900] [900,003] [0,018	1

Tabla 2
Tensión eléctrica continua medida en los bornes de salida Auxiliar, salida Normal 0 V.

Rango	Valor nor	Valor nominal		ido	Incertidumbre (k = 2)	
329,9999 mV	-329		-329,091		0,016	
329,9999 IIIV	329	_ m∨	329,048	- m∨	0,016	mV
	-3,29		-3,29061		0,00016	
3,299999 V	0,33] v [0,330050] v [0,000017	V
	3,29		3,29063	7	0,00016	

OT N° 00222-00012238 Página 4 de 13

Tabla 3

Resistencia eléctrica en bornes de salida Normal y Auxiliar. Los valores menores a 119 k se midieron con el comando ZCOMP 4WIRE, y para otros valores se utilizó ZCOMP NONE.

Rango	Valor nor	ninal	Valor med	ido	Incertidumbre	(k=2)
10,9999 Ω	0	T	0,000267		0,000050	· · · · · · · · · · · · · · · · · · ·
10'9999 77	10,9	1	10,90053	7	0,00020	1
	11,9	1	11,90148	7	0,00018	1
32,9999 Ω	19]	19,00145	1	0,00029	Ω
	30	Ω	30,00104	Ω	0,00032	
109,9999 Ω	33] 12	33,00211] <u>11</u>	0,00040	
103,3333 11	109	}	109,0003]	0,0011	
	119]	119,0018		0,0012	1
329,9999 Ω	190	1	190,0048	7	0,0019	7
	300	1	300,0119	7	0,0039	1
4.000000.40	0,33		0,3300000		0,0000036	
1,099999 kΩ	1,09	1	1,089996	7	0,000011	1
	1,19]	1,190008	7	0,000012	1
3,299999 kΩ	1,9	1	1,900039	7	0,000019	1
	3	1	3,000093	7	0,000036	1
40,00000 1:0	3,3	1	3,299995	kΩ	0,000040	kΩ
10,99999 kΩ	10,9	1	10,89996		0,00011	
	11,9	kΩ	11,89997		0,00012	
32,99999 kΩ	19		19,00021	7	0,00019	1
	30] .	30,00021	1	0,00036	
400 0000 1:0	33	1 .	33,00013	1	0,00040	
109,9999 kΩ	109	1	109,0000	1	0,0011	
	119	1	119,0006	1	0,0013	
329,9999 kΩ	190	1	190,0039	1	0,0021	
	300	1 1	300,0058	1	0,0039	1
4.000000.440	0,33		0,3299999		0,0000043	
1,099999 ΜΩ	1,09		1,089997	1	0,000012	1
	1,19		1,189988	1	0,000018	1
3,299999 MΩ	1,9		1,900011	1 .	0,000025	1
	3]	3,00003	1	0,00015	1
40,00000,140	3,3	1	3,29997	1 1	0,00016	1
10,99999 MΩ	10,9		10,90009	1	0,00033	
	11,9	MΩ	11,90006	MΩ	0,00060	МΩ
32,99999 MΩ	19		18,99992	1 .	0,00095	
	30		30,000		0,013	
400 0000 MO	33]	32,995	1	0,013	
109,9999 ΜΩ	109		108,980	1	0,016	
200 0000 110	119		118,97	1	0,19	
329,9999 MΩ	290		289,9	1	1,3	

Ver cláusulas aplicables a este certificado al final del documento

OT N° 00222-00012238 Página 5 de 13

Tabla 4
Corriente eléctrica continua medida en los bornes de la salida Auxiliar.

Rango	Valor no	minal	Valor me	dido	Incertidu (k=2		Resistencia de carga (Ω)
	0		0,000007		0,000010		1000
	-3,29]	-3,28997		0,00010		400
	-1,9		-1,899963		0,000057	ļ	100
3,29999 mA	-0,19]	-0,189992		0,000015		4000
	0,19		0,190003		0,000015		1000
	1,9		1,899981		0,000057		400
	3,29	}	3,29000		0,00010		100
	` 0		0,0001		0,0010		
	-32,9	mA	-32,8999	mA	0,0016	mA	
32,9999 mA	-19		-18,99971		0,00095		10
	19		18,99990		0,00095		
	32,9		32,9002		0,0016		ł 1
	0		-0,0005		0,0010		
	-329		-328,999		0,016		
329,999 mA	-190		-189,997		0,009	İ	1,6
	190		189,998		0,009		
	329		329,001		0,016	1	
	0		-0,000003		0,000010		
2,2 A	1,09		1,090217		0,000055	[0,16
	-1,09	Α	-1,090224	Α	0,000055		•
	0	^	0.00001	A	0,00010	A	***
11 A	-10,9			0,00087		0,04	
	10,9		10,90064		0,00087		

Secretaria de Industria y Deserrollo Productivo

Certificado de Calibración

OT N° 00222-00012238 Página 6 de 13

Tabla 5
Tensión eléctrica alterna medida en los bornes de salida Normal.

Rango	Frecuencia	Valor noi	minal	Valor me	dido	Incertidun (k=2)	nbre
	45 Hz	6	Ţ	5,9997	T	0,0024	7
	10 kHz	6		5,9997	7	0,0024	7
	9,5 Hz	30]	30,651	7	0,011	7
	10 Hz	30]	30,002	7	0,011	7
	45 Hz	30]	29,9996	1	0,0045	7
32,999 mV	1 kHz	30		29,9989	7	0,0045	1 :
	10 kHz	30]	29,9991	7	0,0045	7
	20 kHz	30	7	30,0009	7	0,0045	1
	50 kHz	30	7	30,0073	1	0,0090	7
	100 kHz	30]	30,015	1	0,015	7
	450 kHz	30] mV	30,005] [0,033	1
	45 Hz	33	ן זווע	32,9962	mV	0,0049	⊤m∨
	10 kHz	33		32,9952	1	0,0049	7
	9,5 Hz	300] :	301,963	1	0,075	7
	10 Hz	300		300,001	1 .	0,075	7
	45 Hz	300]	299,997	1 1	0,015	1
329,999 mV	1 kHz	300	}	299,991]	0,015	1
	10 kHz	300		299,983]	0,015	1
	20 kHz	300]	299,969	1	0,015	7
	50 kHz	300]	299,941	1 1	0,030	1
	100 kHz	300		299,895	1 1	0,075	1
· · · · · · · · · · · · · · · · · · ·	500 kHz	300		299,53	1 1	0,15	1
	45 Hz	0,33		0,329950		0,000033	
	10 kHz	0,33]	0,329935	1	0,000033	1
	9,5 Hz	3]	3,01569	1 1	0,00075	1
	10 Hz	3	1	2,99998	1 1	0,00075	1
	45 Hz	3]	2,99994	1 [0,00015	1
3,29999 V	1 kHz	3	V	2,99989	v	0,00015	l v
	10 kHz	3] [2,99983		0,00015	1
	20 kHz	3] [2,99975	1	0,00015	1
	50 kHz	3		2,99953	1 1	0,00021	
	100 kHz	3]	2,99929		0,00033	
	450 kHz	3		2,9997		0,0018	

OT N° 00222-00012238 Página 7 de 13

Tabla 5 (continuación) Fensión alterna medida en los bornes de salida Norma

<u></u>	i ension alterna m	edida en los	porne	s de salida No	rmai.		
Rango	Frecuencia	Valor nor	ninal	Valor med	lido	Incertidumbre (k=2)	
	45 Hz	3,3		3,29944		0,00016	
	10 kHz	3,3	_	3,29920] ,	0,00016	7
	9,5 Hz	30]	30,2847]	0,0075	7
	10 Hz	30]	29,9996]	0,0075	7
32,9999 V	45 Hz	30]	29,9998	1	0,0015	7
OZ,5555 ¥	1 kHz	30]	29,9974		0,0015	7
	10 kHz	30]	29,9974]	0,0015	7
	20 kHz	30		29,9973]	0,0015	7
	50 kHz	30]	29,9964]	0,0030	7
	90 kHz	30]	29,9982	1 1	0,0045	7
	45 Hz	33	v	32,9949	v	0,0017	7
	10 kHz	33] '	32,9932		0,0016	V
329,999 V	45 Hz	300		300,008		0,018	7
029,999 V	1 kHz	300		299,974		0,018	7.
	10 kHz	300] i	299,970		0,018	7
	18 kHz	300		299,983	İ	0,018	1
	45 Hz	330]	330,016	1	0,020	7
	10 kHz	330		330,009		0,020	7
1020 V	45 Hz	1000		1000,064	Ì	0,060	7
1020 ¥	1 kHz	1000		999,991		0,060	1
	5 kHz	1000	i l	999,976		0,060	7
	8 kHz	1000	1 1	999,942		0,060	┪.

Tabla 6
Tensión eléctrica alterna medida en los bornes de la salida Auxiliar. Tensión alterna en salida Normal igual a 300 mV.

Rango	Frecuencia	Valor non	ninal	Valor med	dido	Incertiduml (k=2)	bre
į	45 Hz	10]	9,9913]	0,0040	
	1 kHz	10]	9,994	1	0,004	1
	5 kHz	10		10,0016	1	0,0040	1
	10 kHz	10		10,0093	1	0,0040	1.
329,999 mV	9,5 Hz	300]	299,801	1	0,075	1
525,555 IIIV	10 Hz	300	m∨	299,990	mV	0,075	mV
	45 Hz	300	1	300,039		0,030	
	1 kHz	300	1	300,071		0,030	
	5 kHz	300	1	300,037		0,030	
	10 kHz	300		300,035		0,030	
	9,5 Hz	3		2,99704		0,00075	
	10 Hz	3		2,99988	1	0,00075	
3,29999 V	45 Hz	3	v	3,00038	١.,	0,00030	١.,
0,29999 V	1 kHz	3	V	3,00062	٧	0,00030	V
	5 kHz	3		3,00039		0,00030	
	10 kHz	3		3,00033		0,00030	

Ver clausulas aplicables a este certificado al final del documento

OT N° 00222-00012238 Página 8 de 13

Tabla 7
Corriente eléctrica alterna medida en los bornes de salida Auxiliar.

Rango	Frecuencia	Valor non	ninal	Valor med	ido	Incertidum (k=2)	bre	Resistencia de carga [Ω]
	1 kHz	33	T	33,0080		0,0066	1	<u></u>
	10 kHz	33		33,0257	1	0,0066	1	
	45 Hz	190	1	189,997	1	0,038	1	
	1 kHz	190	1	190,014	1	0,029	1	
330.00	10 kHz	190	1	189,983	1	0,038	١	
329,99 µA	10 Hz	329	μA	328,948	μA	0,099	μΑ	4000
	45 Hz	329]	329,002	1	0,066		1000
	1 kHz	329		329,032	1	0,066]	
	5 kHz	329]	328,989	1	0,066	[•
	10 kHz	329	<u></u>	328,985]	0,066		
	1 kHz	0,33		0,329981		0,000066		
	10 kHz	0,33]	0,330083		0,000066		
	1 kHz	1,9		1,90008]	0,00029		7- 11- 11- 11- 11- 11- 11- 11- 11- 11- 1
	10 kHz	1,9	}	1,89974]	0,00038		
3,29999 mA	10 Hz	3,29]	3,28940]	0,00099		
	45 Hz	3,29]	3,28995		0,00049		
	1 kHz	3,29	}	3,29031		0,00049		100
	5 kHz	3,29]	3,28979		0,00049		
	10 kHz	3,29	mΑ	3,28968		0,00066		
	1 kHz	3,3	IIIA	3,30007	mA	0,00066	mΑ	
	5 kHz	3,3		3,30035		0,00066		
	1 kHz	19		19,0005		0,0014		
	10 kHz	19		18,9955		0,0014		
32,9999 mA	10 Hz	32,9		32,8941		0,0099		
	45 Hz	32,9		32,8995)	0,0033		10
:	1 kHz	32,9		32,9021] [0,0033		
	5 kHz	32,9		32,8990		0,0033		
	10 kHz	32,9		32,8992		0,0066		

OT N° 00222-00012238 Página 9 de 13

Tabla 7 (continuación)

Corriente eléctrica alterna medida en los bornes de salida Auxiliar.

Rango	Frecuencia	Valor nor	ninal	Valor med	lido	Incertidum (k=2)	bre	Resistencia de carga [Ω]
	1 kHz	33		33,0011		0,0050		
	5 kHz	33]	33,0039	7	0,0066	1	10
	1 kHz	190]	189,999		0,010	1	
329,999	10 kHz	190] i	189,962	1	0,010	1	
mA	10 Hz	329	mA	328,939	mA	0,099	mΑ	
111/5	45 Hz	329		328,995	1	0,033	1	
	1 kHz	329]	329,019	1	0,033	1	1,6
	5 kHz	329		328,982]	0,033	1	* -
	10 kHz	329	l	328,977	7	0,033	1 :	
	1 kHz	0,33		0,330114		0,000066	1	:
	5 kHz	0,33]	0,330297]	0,000066		
2,2 A	45 Hz	2,19] [2,18976	1	0,00066		
	1 kHz	2,19] [2,18975	1	0,00066	1 i	
	5 kHz	2,19] , [2,19004	1 .	0,00088	1 .	0,16
	500 Hz	2,2	A	2,20041	A	0,00066	A	-,
	1 kHz	2,2] [2,20036	1	0,00066	1	;
11 A	45 Hz	11	1 1	10,9995	1	0,0022		:
	500 Hz	11	1	10,9986	1	0,0022		0,04
	1 kHz	11	1	10,9983	1	0,0022		

Tabla 8
Capacidad a dos terminales en los bornes de salida Normal.

Rango	Valor nominal		Frecuencia de medición	Valor medido		Incertidumbre (k=2)	
0,3999 nF	0,35			0,3516		0,0018	T
0,0999 111	0,48]		0,4815	1	0,0024	1
1,0999 nF	0,6]		0,6018	1	0,0030	1
1,0000111	1			1,0018	1	0,0020	1
3,2999 nF	1,2]		1,2021	1	0,0024	1
0,2999 (11	3]	4 14 1-	3,0017		0,0060	1
10,999 nF	3,3]		3,3017	1	0,0066	1
10,555 111	10,9	nF	1 kHz	10,901	กF	0,022	nF
	12			11,998		0,024	
32,999 nF	30]		30,002		0,060	
	33			33,004]	0,066	
109,99 nF	109]		109,00		0,22	
329,99 nF	120]		120,00		0,24	
029,99 11	300			299,96		0,75	
1,0999 µF	330		100 Hz	329,98		0,92	
1,0000 μι	1,09	μF	100 172	1,0898	μF	0,0027	μF

Ver clausulas aplicables a este certificado al final del documento

OT N° 00222-00012238 Página 10 de 13

Tabla 9
Frecuencia medida en los bornes de salida Normal.

Rango	Tensión de salida	Frecuencia nominal	Valor med	do	Incertidumbre U		
		119 Hz	118,99917		0,00012		
3.29999 V	3 V	120 Hz	119,99991	Hz	0,00012	Hz	
3,29999 V] 3 V	1000 Hz	999,9982	1	0,0010	7	
		100 kHz	99,99987	kHz	0,00010	kHz	

Tabla 10 Simulador de termopares.

Tipo de termopar	Referencia interna de temperatura	Valor nominal [℃]	Valor equivalente [mV]	Valor medido [mV]	Incertidumbre U [mV]
		0	0	-0,001	0,002
		100	1	0,999	0,001
		-100	-1	-1,001	0,001
10 µV/℃	Desactivada	1000	10	9,999	0,001
		-1000	-10	-10,001	0,001
		10000	100	99,999	0,002
		-10000	-100	-100,001	0,002

Tabla 11 Indicador de termopares.

Tipo de termopar	Referencia interna de temperatura	Valor de entrada [mV]	Valor nominal [°C]	Valor medido [mV]	Incertidumbre (k=2) [mV]
10 µV / °C	Desactivada	0	0,000	0,001	0,002
		100	10000,0	100,001	0,002
		-100	-10000,0	-100,001	0,002

Incertidumbre de medición

La incertidumbre de medición expandida informada (U) fue calculada multiplicando la incertidumbre estándar combinada por un factor de cobertura k=2, lo que corresponde a un nivel aproximado de confianza del 95 % bajo distribución normal. No contiene términos que contemplen el comportamiento a largo plazo del instrumento sometido a calibración.

Ver cláusulas aplicables a este certificado al final del documento

Secretaria de Industria y Desarrollo Productivo

Certificado de Calibración

OT N° 00222-00012238 Página 11 de 13

Observaciones

Los resultados contenidos en el presente certificado se refieren a las condiciones en que se realizaron las mediciones por el INTI.

El usuario es responsable de la calibración a intervalos apropiados

"El 20 de mayo de 2019 se puso en vigencia la modificación del Sistema Internacional de Unidades (SI). En el nuevo sistema las unidades de base cambian sus definiciones refiriéndose, en todos los casos, a constantes de referencia. Como Instituto Nacional de Metrología de la República Argentina, el Instituto Nacional de Tecnología Industrial da a conocer a la industria, a las instituciones científicas y a todos los interesados la información de los cambios a través del siguiente enlace https://www.inti.gob.ar/areas/metrología-y-calidad/si "

El presente certificado ha sido firmado digitalmente mediante el Sistema de Gestión Documental Electrónica (GDE) cumpliendo con los estándares internacionales de seguridad adoptados por la Infraestructura de Firma Digital de la República Argentina (IFDRA).

Services of behavior

Certificado de Calibración

OT Nº 00222-00012238 Página 12 de 13

El INTI es el máximo órgano técnico de la República Argentina en el campo de la Metrología. Es función legal del INTI la realización y mantenimiento de los patrones de las unidades de medida, conforme al Sistema Internacional de Unidades (SI), así como su diseminación en los ámbitos de la metrología científica, industrial y legal, constituyendo la cúspide de la pirámide de trazabilidad metrológica en la República Argentina. Los Certificados de Calibración/Medición emitidos por el INTI garantizan la trazabilidad metrológica mediante los patrones nacionales de medida, realizados y mantenidos por el propio INTI.

Asimismo, el INTI es firmante del Acuerdo de Reconocimiento Mutuo de Patrones Nacionales de Medida y Certificados de Calibración y Medición (CIPM-MRA), redactado por el Comité Internacional de Pesas y Medidas, por el cual los institutos nacionales de metrología firmantes reconocen entre al la validaz de sus Certificados de Calibración y de Medición para el alcance cubierto por las Capacidades de Medición y Calibración (CMC) incluidas en el Apéndice C de dicho acuardo, el cual se encuentra disponible en http://acuth.biom.org/eppendix.Cidefeutrasp.

Las CMCs publicadas en la página mencionada son aceptadas por los demás institutos mediante un complajo procedimiento, que incluye una serie de comparaciones internacionales por un tado, por evaluaciones de pares periódicas por otro, y se encuentran soportadas por sistemas de gestión de la calidad basados en la norma ISO/IEC 17025; y en la Norma ISO 17034 cuando corresponde. A la facha, el INTI posae carda de 250 capacidades de medición publicadas en el Apendice C, vinculadas a los servicios de calibración y medición más relevantes. El proceso de declaración y publicación de nuevas CMCs continúa desarrollándose.

Por otra parte, el INTI, a través de sus diferentes Unidades Operativas, ubicadas en diferentes regiones del país, brinda un Servicio Integrado de Cálibración/Medición. En los casos en que diferentes Unidades Operativas ofrecen el mismo servicio, los procedimientos de calibración y medición se encuentran armonizados. De esta manera se acuerdan y establecen internamente metodologías armonizadas para el desarrollo de determinaciones similares y se garantiza la equivalencia y compatibilidad de los resultados. Así mismo, aquellas capacidades de medición no incluidas en el MRA, son evaluadas dentro del proceso de auditorias cruzadas del instituto."

Fin del Certificado

Vir dausular opiicatues a este certificado al final del documento:

Secretaria de Industria

OT N° 00222-00012238 Página 13 de 13

Certificado de Calibración

CLÁUSULAS APLICABLES A ESTE CERTIFICADO:

- 1. Los solicitantes podrán difundir los contenidos de este certificado en la medida que su reproducción sea completa y exacta. citando al INTI como ejecutor de la tarea. El INTI no será responsable por el uso incompleto o inexacto de la información incluida en este documento.
- 2. Los resultados incluidos en este certificado se refieren exclusivamente a los obtenidos respecto del/de los equipo/s, instrumento/s o elemento/s calibrado/s o medidos por el INTI.
- 3. El INTI no asume responsabilidad alguna respecto del uso extensivo de los resultados informados en este certificado a otros equipos, instrumentos o elementos diferentes a los recibidos en sus laboratorios (excepto que los mismos hayan sido seleccionados por el propio INTI) o a servicios metrológicos que difieran de los expresamente acordados con el solicitante.
- 4. El INTI mantiene la confidencialidad respecto de la información generada durante el desarrollo de las calibraciones o mediciones realizadas, reservándose el derecho de utilizar los resultados obtenidos a partir de las mismas sólo con fines estadísticos, para su uso interno o para la divulgación genérica de sus actividades. adoptando en dichos casos las medidas de resguardo necesarias para preservar la propiedad de esa información y evitar la identificación de su origen.
- 5. Cuando la información a la que se reflere el punto anterior le sea requerida legalmente por una autoridad competente y/o por una autoridad judicial, el INTI informará de tal situación al propietario de la misma antes de ponerla a disposición del requirente.
- 6. En caso de violación de la cualquiera de las presentes cláusulas, el INTI adoptará las medidas legales correspondientes e iniciará las acciones administrativas y/o judiciales que se encuentren a su alcance.

Ver cláusulas aplicables a este certificado al final del documento

República Argentina - Poder Ejecutivo Nacional AÑO DE LA RECONSTRUCCIÓN DE LA NACIÓN ARGENTINA

Hoja Adicional de Firmas Informe gráfico firma conjunta

Número: IF-2025-114054210-APN-SOMCEI#INTI

VILLA MAIPU, BUENOS AIRES Martes 14 de Octubre de 2025

Referencia: Certificado correspondiente a OT 222-0012238

El documento fue importado por el sistema GEDO con un total de 13 pagina/s.

Digitally signed by GESTION DOCUMENTAL ELECTRONICA - GDE Date: 2025.10.14 12:00:57 -03:00

Juan Pablo Catolino Investigador Subgerencia Operativa de Metrología Científica e Industrial Instituto Nacional de Tecnología Industrial Digitally eigned by GESTION DOCUMENTAL ELECTRONICA - GDE Date: 2025;10.14 12:05:54 -03:00

Mariano Real Jefe de Departamento Subgerencia Operativa de Metrología Científica e Industrial Instituto Nacional de Tecnología Industrial